Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Nutr Biochem ; 100: 108899, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748924

RESUMO

A. membranaceus is a traditional Chinese medicine that regulates blood sugar levels, suppresses inflammation, protects the liver, and enhances immunity. In addition, A. membranaceus is also widely used in diet therapy and is a well-known health tonic. Formononetin is a natural product isolated from A. membranaceus that has multiple biological functions, including anti-cancer activity. However, the mechanism by which formononetin inhibits tumor growth is not fully understood. In this present study, we demonstrated that formononetin suppresses PD-L1 protein synthesis via reduction of MYC and STAT3 protein expression. Furthermore, formononetin markedly reduced the expression of MYC protein via the RAS/ERK signaling pathway and inhibited STAT3 activation through JAK1/STAT3 pathway. Co-immunoprecipitation experiments illustrated that formononetin suppresses protein expression of PD-L1 by interfering with the interaction between MYC and STAT3. Meanwhile, formononetin promoted PD-L1 protein degradation via TFEB and TFE3-mediated lysosome biogenesis. T cell killing assay revealed that formononetin could enhance the activity of cytotoxic T lymphocytes (CTLs) and restore ability to kill tumor cells in a co-culture system of T cells and tumor cells. In addition, formononetin inhibited cell proliferation, tube formation, cell migration, and promoted tumor cell apoptosis by suppressing PD-L1. Finally, the inhibitory effect of formononetin on tumor growth was confirmed in a murine xenograft model. The present study revealed the anti-tumor potential of formononetin, and the findings should support further research and development of anti-cancer drugs for cervical cancer.


Assuntos
Antígeno B7-H1/metabolismo , Carcinogênese/efeitos dos fármacos , Isoflavonas/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias do Colo do Útero/fisiopatologia , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Regulação para Baixo , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Lisossomos/metabolismo , Biogênese de Organelas , Proteínas Proto-Oncogênicas c-myc/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Linfócitos T/imunologia , Neoplasias do Colo do Útero/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Phytother Res ; 35(7): 3916-3935, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33970512

RESUMO

The programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway is abnormally expressed in cervical cancer cells. Moreover, PD-1/PD-L1 blockade reduces the apoptosis and exhaustion of T cells and inhibits the development of malignant tumors. Usnic acid is a dibenzofuran compound originating from Usnea diffracta Vain and has anti-inflammatory, antifungal, and anticancer activities. However, the molecular mechanism of its antitumor effects has not been fully elucidated. In this work, we first observed that usnic acid decreased the expression of PD-L1 in HeLa cells and enhanced the cytotoxicity of co-cultured T cells toward tumor cells. Usnic acid inhibited PD-L1 protein synthesis by reducing STAT3 and RAS pathways cooperatively. It was subsequently shown that usnic acid induced MiT/TFE nuclear translocation through the suppression of mTOR signaling pathways, and promoted the biogenesis of lysosomes and the translocation of PD-L1 to the lysosomes for proteolysis. Furthermore, usnic acid inhibited cell proliferation, angiogenesis, migration, and invasion, respectively, by downregulating PD-L1, thereby inhibiting tumor growth. Taken together, our results show that usnic acid is an effective inhibitor of PD-L1 and our study provide novel insights into the mechanism of its anticancer targeted therapy.


Assuntos
Antígeno B7-H1 , Benzofuranos/farmacologia , Proliferação de Células/efeitos dos fármacos , Linfócitos T/imunologia , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Células HeLa , Humanos , Parmeliaceae/química
3.
Phytomedicine ; 81: 153425, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33310309

RESUMO

BACKGROUND: Programmed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which causes tumor cells to escape T cell killing, and promotes tumor cell survival, cell proliferation, migration, invasion, and angiogenesis. Britannin is a natural product with anticancer pharmacological effects. PURPOSE: In this work, we studied the anticancer potential of britannin and explored whether britannin mediated its effect by inhibiting the expression of PD-L1 in tumor cells. METHODS: In vitro, the mechanisms underlying the inhibition of PD-L1 expression by britannin were investigated by MTT assay, homology modeling and molecular docking, RT-PCR, western blotting, co-immunoprecipitation, and immunofluorescence. The changes in tumor killing activity, cell proliferation, cell cycle, migration, invasion, and angiogenesis were analyzed by T cell killing assays, EdU labeling, colony formation, flow cytometry, wound healing, matrigel transwell invasion, and tube formation, respectively. In vivo, the antitumor activity of britannin was evaluated in the HCT116 cell xenograft model. RESULTS: Britannin reduced the expression of PD-L1 in tumor cells by inhibiting the synthesis of the PD-L1 protein but did not affect the degradation of the PD-L1 protein. Britannin also inhibited HIF-1α expression through the mTOR/P70S6K/4EBP1 pathway and Myc activation through the Ras/RAF/MEK/ERK pathway. Mechanistically, britannin inhibited the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. In addition, britannin could enhance the activity of cytotoxic T lymphocytes and inhibit tumor cell proliferation and angiogenesis by inhibiting PD-L1. Finally, in vivo observations were confirmed by demonstrating the antitumor activity of britannin in a murine xenograft model. CONCLUSION: Britannin inhibits the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. Moreover, britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by inhibiting PD-L1 in cancer. The current work highlights the anti-tumor effect of britannin, providing insights into the development of cancer therapeutics via PD-L1 inhibition.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactonas/farmacologia , Neovascularização Patológica/tratamento farmacológico , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Sesquiterpenos/farmacologia , Linfócitos T/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Células HCT116 , Humanos , Lactonas/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Neovascularização Patológica/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/química , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sesquiterpenos/química , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Ethnopharmacol ; 273: 113598, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33220359

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium chrysotoxum Lindl is a cultivation of Dendrobium which belongs to the family of Orchidaceae. D. chrysotoxum Lindl is a traditional Chinese medicine with a wide range of clinical applications including tonic, astringent, analgesic and anti-inflammatory properties as early as the 28th century B.C. Erianin is a representative index component for the quality control of the D. chrysotoxum Lindl, which is included in the Pharmacopoeia of the People's Republic of China (2020 version). AIM OF THE STUDY: To clarify the anti-tumour mechanisms of erianin in vitro and in vivo. MATERIALS AND METHODS: We detected the anti-tumour activity of erianin using in vitro HeLa cell models and in vivo cervical cancer xenograft models. We performed MTT, western blot, RT-PCR, homology modeling, flow cytometry, and immunoprecipitation assays to study the proteins, genes, and pathways related to erianin's anti-tumour activity. LysoTracker Red staining was performed to detect lysosome function. Transwell, wound healing, tube formation, colony formation and EdU labelling assays were performed to determine cell proliferation, migration and invasion abilities, respectively. Cytotoxic T lymphocytes ability was confirmed using HeLa/T-cell co-culture model. RESULTS: Experimental data demonstrated that erianin inhibited PD-L1 expression and induced the lysosomal degradation of PD-L1. Erianin suppressed HIF-1α synthesis through mTOR/p70S6K/4EBP1 pathway, and inhibited RAS/Raf/MEK/MAPK-ERK pathway. Immunoprecipitation experiments demonstrated that erianin reduced the interaction between RAS and HIF-1α. Experiments using a co-cultivation system of T cells and HeLa cells confirmed that erianin restored cytotoxic T lymphocytes ability to kill tumour cells. Erianin inhibited PD-L1-mediated angiogenesis, proliferation, invasion and migration. The anti-proliferative effects of erianin were supported using in vivo xenotransplantation experiments. CONCLUSIONS: Collectively, these results revealed previously unknown properties of erianin and provided a new basis for improving the efficacy of immunotherapy against cervical cancer and other malignant tumours through PD-L1.


Assuntos
Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Bibenzilas/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Fenol/farmacologia , Linfócitos T Citotóxicos/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Bibenzilas/uso terapêutico , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Lisossomos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Neovascularização Patológica/metabolismo , Fenol/uso terapêutico , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Linfócitos T Citotóxicos/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/metabolismo , Proteínas ras/metabolismo
5.
ACS Chem Neurosci ; 11(15): 2214-2230, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32609480

RESUMO

Inflammation is a potential factor in the pathophysiology of depression. A traditional Chinese herbal medicine, arctiin, and its aglycone, arctigenin, are the major bioactive components in Fructus arctii and exhibit neuroprotective and anti-inflammatory activities. Arctigenin has been reported to have antidepressant-like effects. However, the antidepressant-like effects of arctiin, its precursor, remain unknown. In this study, we investigated the antidepressant-like effects of arctiin and its underlying mechanisms by in vivo and in vitro experiments in mice. Our results showed that arctiin significantly attenuated sucrose consumption and increased the immobility time in tail suspension and forced swimming tests. Arctiin decreased neuronal damage in the prefrontal cortex (PFC) of the brain. Arctiin also attenuated the levels of three inflammatory mediators, indoleamine 2,3-dioxygenase, 5-hydroxytryptamine, and dopamine, that were elevated in the PFC or serum of chronic unpredictable mild stress (CUMS)-exposed mice. Arctiin reduced excessive activation of microglia and neuroinflammation by reducing high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4)- and tumor necrosis factor-α (TNF-α)/TNF receptor 1 (TNFR1)-mediated nuclear factor-kappa B (NF-κB) activation in the PFC of CUMS-exposed mice and HMGB1- or TNF-α-stimulated primary cultured microglia. These findings demonstrate that arctiin ameliorates depression by inhibiting the activation of microglia and inflammation via the HMGB1/TLR4 and TNF-α/TNFR1 signaling pathways.


Assuntos
Proteína HMGB1 , NF-kappa B , Animais , Antidepressivos/farmacologia , Depressão , Furanos , Glucosídeos , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa
6.
J Ethnopharmacol ; 257: 112835, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32278762

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Curcuma wenyujin is a Chinese traditional herbal medicine that is commonly used as an anti-oxidant, anti-proliferative, and anti-tumorigenic agent. Curcumol is a representative index component for the quality control of the essential oil of Curcuma wenyujin, which is currently used as an anti-cancer drug, and is included in the State Pharmacopoeia Commission of the People's Republic of China (2005). However, the mechanisms of action and molecular functions of curcumol are not yet fully elucidated. AIM OF THE STUDY: This study aimed to identify new effects of curcumol from the perspective of cancer immunotherapy. MATERIALS AND METHODS: The underlying mechanism of the inhibition of programmed cell death-ligand 1 (PD-L1) activation by curcumol was investigated in vitro via homology modeling, molecular docking experiments, luciferase reporter assays, MTT assays, RT-PCR, western blotting, and immunofluorescence assays. Changes in cellular proliferation, angiogenesis, and the tumor-killing activity of T-cells were analyzed via EdU labeling, colony formation, flow cytometry, wound-healing, Matrigel Transwell invasion, tube formation, and T-cell killing. The anti-tumor activity of curcumol was assessed in vivo in a murine xenograft model using Hep3B cells. RESULTS: Curcumol reduced the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) via JAK1, JAK2, and Src pathways and inhibited hypoxia-inducible factor-1α (HIF-1α) protein synthesis via mTOR/p70S6K/eIF4E and MAPK pathways. Furthermore, we revealed crosstalk between STAT3 and HIF-1α pathways, which collaboratively regulated PD-L1 activation, and that curcumol played a role in this regulation. Curcumol inhibited cell proliferation, S-phase progression, tube formation, invasion, and metastasis by inhibiting PD-L1. In addition, curcumol restored the activity of cytotoxic T-cells and their capacity for tumor cell killing by inhibiting PD-L1. In vivo experiments confirmed that curcumol inhibited tumor growth in a xenograft model. CONCLUSIONS: These results illustrated that curcumol inhibits the expression of PD-L1 through crosstalk between HIF-1α and p-STAT3 (T705) signaling pathways in hepatic cancer. Thus, curcumol might represent a promising lead compound for the development of new targeted anti-cancer therapeutics.


Assuntos
Antígeno B7-H1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Fator de Transcrição STAT3/metabolismo , Sesquiterpenos/farmacologia , Células A549 , Animais , Linhagem Celular Tumoral , Células HeLa , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Janus Quinase 2 , Masculino , Camundongos , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neovascularização Patológica/tratamento farmacológico , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
7.
Pharmacol Res ; 155: 104727, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32113874

RESUMO

Panaxadiol is a triterpenoid sapogenin monomeric compound found in the roots of Panax ginseng and has a variety of biological activities such as neuroprotective and anti-tumour functions. However, the mechanisms how panaxadiol exerts the anticancer effects remain unknown. The current study aimed to investigate the potential activity of panaxadiol on programmed cell death-ligand 1 (PD-L1) expression and tumour proliferation in human colon cancer cells and to identify the underlying mechanism. Results showed that panaxadiol showed little cytotoxicity as assessed by a cytotoxicity assay and significantly inhibited PD-L1 expression at the protein and mRNA level in a dose-dependent manner. Furthermore, panaxadiol supressed the hypoxia-induced synthesis of hypoxia-inducible factor (HIF)-1α via the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways without affecting HIF-1α degradation. Simultaneously, panaxadiol inhibited STAT3 activation through the JAK1, JAK2, and Src pathways. Moreover, pre-treatment with panaxadiol enhanced the activity of cytotoxic T lymphocytes (CTL) and regained their capacity of tumour cell killing in a T cell and tumour cell co-culture system. Immunoprecipitation showed that panaxadiol inhibited PD-L1 expression by blocking the interaction between HIF-1α and STAT3. The inhibitory effect of panaxadiol on tumour proliferation was further demonstrated by colony formation and EdU labelling assays. The anti-proliferative effect of panaxadiol was also proved by a xenograft assay in vivo. Taken together, the current work highlights the anti-tumour effect of panaxadiol, providing insights into development of cancer therapeutic through PD-L1 inhibition.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Ginsenosídeos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Ginsenosídeos/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
8.
Phytother Res ; 32(1): 65-75, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29044876

RESUMO

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a complex that regulates several hundreds of genes, including those involved in immunity and inflammation, survival, proliferation, and the negative feedback of NF-κB signaling. Chelidonine, a major bioactive, isoquinoline alkaloid ingredient in Chelidonium majus, exhibits antiinflammatory pharmacological properties. However, its antiinflammatory molecular mechanisms remain unclear. In this work, we explored the effect of chelidonine on TNF-induced NF-κB activation in HCT116 cells. We found chelidonine inhibited the phosphorylation and degradation of the inhibitor of NF-κB alpha and nuclear translocation of RELA. Furthermore, by inhibiting the activation of NF-κB, chelidonine downregulated target genes involved in inflammation, proliferation, and apoptosis. Chelidonine also inhibited mitogen-activated protein kinase pathway activation by blocking c-Jun N-terminal kinase and p38 phosphorylation. These results suggest that chelidonine may be a potential therapeutic agent against inflammatory diseases in which inhibition of NF-κB activity plays an important role.


Assuntos
Benzofenantridinas/uso terapêutico , Alcaloides de Berberina/uso terapêutico , Células HCT116/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Apoptose , Benzofenantridinas/administração & dosagem , Benzofenantridinas/farmacologia , Alcaloides de Berberina/administração & dosagem , Alcaloides de Berberina/farmacologia , Humanos , Transdução de Sinais , Transfecção
9.
J Ethnopharmacol ; 203: 27-38, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28341244

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica dahurica is a commonly used traditional Chinese medicine to treat migraine headache, toothache and cancer. Imperatorin is an active natural furocoumarin component originating from Angelica dahurica and has been shown to exhibit multiple bioeffector functions, including anti-cancer activity. However, the mechanism by which imperatorin inhibits tumor growth is not fully understood. AIM OF THE STUDY: The aim of this study was to investigate the effectiveness of imperatorin as a treatment of cancer and to identify the underlying mechanisms of its anticancer activity. MATERIALS AND METHODS: HCT116, HeLa, and Hep3B cells were used in this study. Major assays were promoter-reporter gene assay, MTT, western blot analysis, immunofluorescence assay, reverse transcription-PCR (RT-PCR), flow cytometric analysis, clonogenic assay, EdU labeling and immunofluorescence, xenografted assay, and VEGF ELISA. RESULTS: We here demonstrated the effect of imperatorin on hypoxia-inducible factor-1 (HIF-1) activation. Imperatorin showed a potent inhibitory activity against HIF-1 activation induced by hypoxia in various human cancer cell lines. This compound markedly decreased the hypoxia-induced accumulation of HIF-1α protein dose-dependently, whereas it did not affect the expressions of HIF-1ß and topoisomerase-I (Topo-I). Further analysis revealed that imperatorin inhibited HIF-1α protein synthesis, without affecting the expression level of HIF-1α mRNA or degradation of HIF-1α protein. Moreover, the phosphorylation levels of mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K), eIF4E binding protein-1 (4E-BP1), eukaryotic initiation factor 4E (eIF4E), extracellular signal-regulated kinase-1/2 (ERK1/2), SAPK/JNK and p38 were significantly suppressed by imperatorin. Furthermore, imperatorin prevented hypoxia-induced expression of HIF-1 target genes and flow cytometric analysis indicated that imperatorin induced G1 phase arrest in human colon cancer cell (HCT116). We found that imperatorin administration inhibits tumor growth and blocks tumor angiogenesis in a xenograft tumor model. CONCLUSIONS: These results show that imperatorin inhibited HIF-1α protein synthesis by downregulating the mTOR/p70S6K/4E-BP1 and MAPK pathways. These conclusions suggest that imperatorin is an effective inhibitor of HIF-1 and provide new perspectives into the mechanism of its anticancer activity.


Assuntos
Angelica/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Furocumarinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inibidores da Angiogênese/isolamento & purificação , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Proteínas de Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Furocumarinas/isolamento & purificação , Células HCT116 , Células HeLa , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Fosfoproteínas/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncol Rep ; 36(5): 2771-2776, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27667548

RESUMO

The nuclear factor-κB (NF-κB) transcription factors control many physiological processes including inflammation, immunity, apoptosis and angiogenesis. In our search for NF-κB inhibitors from natural resources, we identified baicalein from Scutellaria baicalensis as an inhibitor of NF-κB activation. As examined by the NF-κB luciferase reporter assay, we found that baicalein suppressed TNF-α-induced NF-κB activation in a dose-dependent manner. It also inhibited TNF-α-induced nuclear translocation of p65 through inhibition of phosphorylation and degradation of IκBα. Furthermore, baicalein blocked the TNF-α-induced expression of NF-κB target genes involved in anti-apoptosis (cIAP-1, cIAP-2, FLIP and BCL-2), proliferation (COX-2, cyclin D1 and c-Myc), invasion (MMP­9), angiogenesis (VEGF) and major inflammatory cytokines (IL-8 and MCP1). The flow cytometric analysis indicated that baicalein potentiated TNF-α-induced apoptosis and induced G1 phase arrest in HeLa cells. Moreover, baicalein significantly blocked activation of p38, extracellular signal-regulated kinase 1/2 (ERK1/2). Our results imply that baicalein could be a lead compound for the modulation of inflammatory diseases as well as certain cancers in which inhibition of NF-κB activity may be desirable.


Assuntos
Flavanonas/administração & dosagem , Extratos Vegetais/administração & dosagem , Fator de Transcrição RelA/biossíntese , Fator de Necrose Tumoral alfa/genética , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Quinase I-kappa B/biossíntese , Quinase I-kappa B/genética , NF-kappa B/biossíntese , NF-kappa B/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Fosforilação , Scutellaria baicalensis , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/genética , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/genética
11.
Nat Prod Res ; 30(9): 995-1000, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26461051

RESUMO

A new 7,20-epoxy kaurane diterpenoid, 15-acetyldemethylkamebacetal A (1) and six known kaurane diterpenoids (2-7) were isolated from the aerial parts of Isodon inflexus in nuclear transcription factor-κB (NF-κB)-dependent reporter gene assay-guided fractionation. Their chemical structures were determined on the basis of extensive spectroscopic analysis (UV, IR, MS, 1D- and 2D-NMR) and comparison with literature data. The isolated compounds were evaluated for their inhibitory effects on TNF-α-induced NF-κB activation, and all compounds exhibited NF-κB inhibitory activities with IC50 values ranging from 1.91 to 20.15 µM.


Assuntos
Diterpenos do Tipo Caurano/análise , Isodon/química , Genes Reporter/genética , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , NF-kappa B/efeitos dos fármacos , NF-kappa B/genética , Extratos Vegetais/análise , Fator de Necrose Tumoral alfa/antagonistas & inibidores
12.
Bioorg Med Chem Lett ; 20(2): 513-5, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20004577

RESUMO

Five iridoid glycosides were isolated from the MeOH extract of Hedyotis diffusa, and their structures were elucidated as E-6-O-p-methoxycinnamoyl scandoside methyl ester (1), Z-6-O-p-methoxycinnamoyl scandoside methyl ester (2), E-6-O-p-feruloyl scandoside methyl ester (3), E-6-O-p-coumaroyl scandoside methyl ester (4), and Z-6-O-p-coumaroyl scandoside methyl ester (5) by interpretation of their spectroscopic data. All the isolated compounds were evaluated for human neutrophil elastase inhibitory effect, and compound 1 showed potent activity with an IC(50) value of 18.0muM. The molecular docking simulation suggested a structural model for the inhibition of human neutrophil elastase by compound 1.


Assuntos
Hedyotis/química , Iridoides/química , Elastase de Leucócito/antagonistas & inibidores , Inibidores de Proteases/química , Sítios de Ligação , Simulação por Computador , Humanos , Iridoides/isolamento & purificação , Iridoides/farmacologia , Elastase de Leucócito/metabolismo , Extratos Vegetais/química , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia
13.
Planta Med ; 74(4): 396-400, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18484530

RESUMO

Interleukin (IL)-5 plays an important role in the progression of allergic inflammation. Here, we have isolated 21alpha-methylmelianodiol and 21beta-methylmelianodiol from Poncirus trifoliata (L.) Raf., a plant of the Rutaceae family, as the inhibitors of IL-5-dependent growth of Y16 pro-B cells by bioassay-guided fractionation. 21alpha-Methylmelianodiol and 21beta-methylmelianodiol inhibited IL-5-dependent growth of Y16 cells in a dose-dependent manner with IC (50) values of 17 microM and 15 microM, respectively. A positive control, tyrphostin AG-490, exhibited an IC (50) value of 23 microM on IL-5 bioactivity. Further, we have documented that 21alpha-methylmelianodiol and 21beta-methylmelianodiol cause G1 arrest of IL-5-induced cell cycle progression of Y16 cells, and also reduce IL-5-dependent survival of the cells by apoptosis. This study could provide a pharmacological potential for P. trifoliata in treatment of IL-5-associated inflammatory disorders.


Assuntos
Interleucina-5/antagonistas & inibidores , Poncirus/química , Células Precursoras de Linfócitos B/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Linhagem Celular , Humanos , Estrutura Molecular , Células Precursoras de Linfócitos B/metabolismo
14.
Planta Med ; 74(2): 151-5, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18219600

RESUMO

Poncirus trifoliata (Rutaceae) extracts have been known to possess anti-allergic, anti-inflammatory and antiviral activities. However, other biological activities, especially, the anticancer potential of extracts of P. trifoliata or its constituents, have not been fully investigated yet. In this study, we have evaluated the antiproliferative effects of a novel triterpenoid, 25-methoxyhispidol A, isolated from the fruit of P. trifoliata against SK-HEP-1 human hepatocellular carcinoma cells. Flow cytometric analysis indicated that 25-methoxyhispidol A arrests the cell cycle in the G1 phase at the earlier time and subsequently induces apoptosis of the cancer cells. Further study revealed that the cell cycle arrest in the G1 phase by 25-methoxyhispidol A correlated well with the inhibition of phosphorylation of the retinoblastoma (Rb) protein, and with the down-regulation of cyclin D1 and cyclin-dependent kinase cdk4 and the induction of cdk inhibitor p21 (WAF1/Cip1) protein. These findings suggest the potential of 25-methoxyhispidol A isolated from the fructus of P. trifoliata as an antitumor agent against human hepatocarcinoma cells by arresting the cell cycle and inducing apoptosis.


Assuntos
Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Poncirus , Triterpenos/farmacologia , Antineoplásicos/isolamento & purificação , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Frutas , Humanos , Neoplasias Hepáticas/patologia , Extratos Vegetais/isolamento & purificação , Estruturas Vegetais/toxicidade , Triterpenos/isolamento & purificação
15.
Eur J Pharmacol ; 572(2-3): 239-48, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17662711

RESUMO

The fruits of Poncirus trifoliata (L.) are widely used in Oriental medicine as a remedy for allergic inflammation. As a part of our program to screen medicinal plants for potential anti-inflammatory compounds, 21alpha-methylmelianodiol (21alpha-MMD) and 21beta-methylmelianodiol (21beta-MMD), which are two isomers of 21-methylmelianodiol isolated from the fruits of P. trifoliata for the first time, were found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. 21alpha-MMD and 21beta-MMD attenuated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 protein expressions as well as the mRNA levels of iNOS, COX-2, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta). To investigate the mechanism involved, we examined the effect of 21alpha-MMD and 21beta-MMD on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Both 21alpha-MMD and 21beta-MMD significantly inhibited LPS-induced NF-kappaB transcriptional activity in RAW 264.7 macrophages. Moreover, the in vivo anti-inflammatory effect of 21alpha-MMD was examined in two mouse models of acute inflammation. In the carrageenan-induced paw edema model, administration of 21alpha-MMD (20 and 100 mg/kg, i.p.) dose-dependently reduced paw swelling. In addition, 21alpha-MMD significantly inhibited the dye leakage in an acetic acid-induced vascular permeability assay. Taken together, our data indicate that 21-methylmelianodiol is an important constituent of the fruit of P. trifoliata, and that the inhibition of iNOS and COX-2 expression by 21alpha-MMD and 21beta-MMD might be one of the mechanisms responsible for their anti-inflammatory effects.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Macrófagos/efeitos dos fármacos , Poncirus , Triterpenos/farmacologia , Ácido Acético , Animais , Permeabilidade Capilar/efeitos dos fármacos , Carragenina , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Edema/induzido quimicamente , Edema/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/genética , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/biossíntese , Estereoisomerismo , Transcrição Gênica , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA